Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces

نویسندگان

  • Corey M. Kruse
  • Troy Anderson
  • Chris Wilson
  • Craig Zuhlke
  • Dennis Alexander
  • George Gogos
  • Sidy Ndao
چکیده

In this paper, we present an experimental investigation of pool boiling heat transfer on multiscale (micro/ nano) functionalized metallic surfaces. Heat transfer enhancement in metallic surfaces is very important for large scale high heat flux applications like in the nuclear power industry. The multiscale structures were fabricated via a femtosecond laser surface process (FLSP) technique, which forms self-organized mound-like microstructures covered by layers of nanoparticles. Using a pool boiling experimental setup with deionized water as the working fluid, both the heat transfer coefficients and critical heat flux were investigated. A polished reference sample was found to have a critical heat flux of 91 W/cm at 40 C of superheat and a maximum heat transfer coefficient of 23,000 W/m K. The processed samples were found to have a maximum critical heat flux of 142 W/cm at 29 C and a maximum heat transfer coefficient of 67,400 W/m K. It was found that the enhancement of the critical heat flux was directly related to the wetting and wicking ability of the surface which acts to replenish the evaporating liquid and delay critical heat flux. The heat transfer coefficients were also found to increase when the surface area ratio was increased as well as the microstructure peak-to-valley height. Enhanced nucleate boiling is the main heat transfer mechanism, and is attributed to an increase in surface area and nucleation site density. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Transfer Enhancement and Applications of Femtosecond Laser Processed Metallic Surfaces

In the present work, functionalized 304 stainless steel metallic surfaces were created with the use of a Femtosecond Laser Surface Processing (FLSP) technique. The laser processing technique produces self-organized micro/nanostructures on the surface. The heat transfer performance of various FLSP functionalized surfaces were characterized through pool boiling and Leidenfrost experiments. Enhanc...

متن کامل

Experimental Study for Investigating the Mechanism of Heat Transfer near the Critical Heat Flux in Nucleate Pool Boiling

Heat transfer coefficient in nucleate pool boiling near critical heat flux at least one orderhigher than the convectional heat transfer modes. In this paper, an experimental setup isdesigned and fabricated to investigate the mechanism of heat transfer from boiling surface tobulk liquid near critical heat flux. The images of pool boiling near the high heat flux regionreveals that the individual ...

متن کامل

An Experimental Study of the Steel Cylinder Quenching in Water-based Nanofluids

In this study, some parameters such as quenching and boiling curves of a stainless steel cylindrical rod 80 mm long and having a diameter of 15 mm were experimentally obtained in saturate pure water and two nanofluids (SiO2 and TiO2) with 0.01 wt%. The cylinder was vertically lowered into the pool of saturated water and its temporal center temperature was measured by a the...

متن کامل

Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces.

In the present work, the effects of surface chemistry and micro/nanostructuring on the Leidenfrost temperature are experimentally investigated. The functional surfaces were fabricated on a 304 stainless steel surface via femtosecond laser surface processing (FLSP). The droplet lifetime experimental method was employed to determine the Leidenfrost temperature for both machine-polished and textur...

متن کامل

Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes

Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014